skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lovenduski, N S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The prediction of atmospheric CO2 concentrations is limited by the high interannual variability (IAV) in terrestrial gross primary productivity (GPP). However, there are large uncertainties in the drivers of GPP IAV among Earth system models (ESMs). Here, we evaluate the impact of these uncertainties on the predictability of atmospheric CO2 in six ESMs. We use regression analysis to determine the role of environmental drivers in (i) the patterns of GPP IAV and (ii) the predictability of GPP. There are large uncertainties in the spatial distribution of GPP IAV. Although all ESMs agree on the high IAV in the tropics, several ESMs have unique hotspots of GPP IAV. The main driver of GPP IAV is temperature in the ESMs using the Community Land Model, whereas it is soil moisture in the ESM developed by the Institute Pierre Simon Laplace (IPSL-CM6A-LR) and in the low-resolution configuration of the Max Planck Earth System Model (MPI-ESM-LR), revealing underlying differences in the source of GPP IAV among ESMs. Between 13 % and 24 % of the GPP IAV is predictable 1 year ahead, with four out of six ESMs showing values of between 19 % and 24 %. Up to 32 % of the GPP IAV induced by soil moisture is predictable, whereas only 7 % to 13 % of the GPP IAV induced by radiation is predictable. The results show that, while ESMs are fairly similar in their ability to predict their own carbon flux variability, these predicted contributions to the atmospheric CO2 variability originate from different regions and are caused by different drivers. A higher coherence in atmospheric CO2 predictability could be achieved by reducing uncertainties in the GPP sensitivity to soil moisture and by accurate observational products for GPP IAV. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Interannual variations in marine net primary production (NPP) contribute to the variability of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a global overview of near‐term (1 to 10 years) potential predictability of marine NPP using a novel set of initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters to the tropics, showing a substantial improvement over a simple persistence forecast. However, some regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how bottom‐up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability. Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher potential predictability than high‐latitude regions where NPP is controlled by light and/or temperature (e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems. With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large Marine Ecosystems over a persistence forecast and may aid to manage living marine resources. 
    more » « less